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This paper presents an analysis and classification of flows. Hyperbolic 
and elliptic-hyperbolic types of flow are examined. It is shown that in 
flow past corners in the hyperbolic regime the turning of the flow occurs 
successively through two compression shocks or expansion waves. A method 
for calculating such flows is given. It is shown that elliptical-hyper- 
bolic flows may be decomposed into an elliptical part which dies out at 
infinity and a hyperbolic part which does not. The character of flow 
past currents Is investigated. It is shown that under the influence of a 
magnetfc field component which is perpendicular to the flow, the per- 
turbations induced by the currents are not shielded by the flow. In an 
ideal infinitely conducting fluid, in the presence of a small perpen- 
dicular field, a magnetic boundary layer develops around currents. 

1. Equations and characteristics. As is well known Cl 1, the 
equations of magnetohydrodynamics for an ideal gas with infinite electric- 
al conductivity have the form 

div (pV) = 0, (VV)V=++pHxrotH 

div H = 0, rot (V x H) = 0, Vgrad(;) = 0 
(1.1) 

Here p is the density, p is the pressure, V is the velocity, and H is 
the magnetic field. 

In order to obtain more simple and descriptive results we restrict 
ourselves to linear theory. After linearization, the system of equations 
(1.1) takes the form 
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where the symbols without indices denote small perturbations 081 the 
values of the corresponding quantities at infinity, denoted by symbols 
with index 0. 

‘lhe inclination of the characteristics of Equations (1.1) to the 
velocity vector is determined by the equations 

y” [ (M2 - N,2) (1 - @) + M”N,2] + 2y’3N,N, + 

+ 9’3 [fw - Iv,* (1 - W) - NV2 (1 -IV’)] + 2N,N,y’ - NV2 = 0 J1.3) 

Here y’ is the tangent of the angle of inclination of a characteristic 
to the velocity vector, M is the Mach number. lhis equation may be de- 
rived, as is done in the theory of differential equations, by setting up 
the kinematic and dynamic conditions of compatibility [Zl. But it may 
be obtained more simply if, in the equation which determines the velo- 
city of propagation of megnetohydrodynamic waves (cf., for instance, 
Equation 52.12 in Ill ), the latter is equated to the velocity canponent 
which is normal to the wave front. In view of the complexity of Equation 
(1.3) it is difficult to see the behavior of its roots. A more descript- 
ive presentation of the characteristics of Equations (1.1) may be obtain- 
ed if they are considered as shock waves of vanishing strength. Inasmuch 
as the inclination of shock waves of vanishing strength is knom I3 1 
for the case where the vectors E and V are parallel, the inclination of 
these waves for arbitrary directions of B and V may be obtained by 
choosing a corresponding moving system of coordinates. From Fig. 1 it 
may be seen that the solutions of Equation (1.3) may be presented in the 
following parametric form: 
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&f=M” tg 71 
eosa tgo[,+tga w-9 

where %2 -Ayl-iy) 
WUll = (&y- 1) ($L jp) ’ 

N2=gp 

Given the values of MI! in those regions in which tg 011 exists, it is 
easy to trace the behavik of the characteristics. Figs."2 and 3 show 
the variation of 1w and tg D with #il corresponding to large and small 

FIG. 2. 

values of tg u, for N< 1. For N> 1 an analogous picture is obtained. 

For small values of a there are two hyperbolic and two elliptic-hyper- 
bolic regimes; for large a there is one elliptic-hyperbolic (for small 
M) and one hyperbolic region (Fig. 4). In the elliptic-hyperbolic 
regines there are two characteristics, and in the hyperbolic ones there 
are four. As in [3 1 we shall call the first hyperbolic region qnasi- 
hyperbolic, and the second one fully hyperbolic, or sinply hyperbolic. 

Along the characteristics the following conditions are satisfied: 

@'NUN, + M2Ny2yr2- NVz)g - (y'2N,2 + M2N,N,yQ - y’N,M,)~ - 
** 

- [ y’3 f&P - Nx*f + y’2N~N~ (1+ M2) 1 e - 
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- [Y’~ + Y’~N,N, + y’N,N,l & = 0 (1.5) 

Here the primes denote differentiation with respect to x, along a 
characteristic. 

_ _ N N 
-tT7 im N I “I 

FIG. 3, 

2. nor in the hyperbolic region. In [ 31 flows withE,(I V0 
are analyzed. Let us investigate the other limiting case, where $IVo. 
J&pression (1.5) takes the form 

N2 (M2y’2 - I)$ + y'N2(1 -jjfM"y'2)g -y'9M2&&y'2 = 0 (2.1) 

For this case, Equation (1.3) has the roots 

(2.2) 

y?2= 
-[M’-N’(i- MS)] f c’[M*- N’(i -MM’)]* + 4N’M2{(1 -M') + N*l 

2 [(I - W) + N']M" 

Here N E N , since R P 0, and the index 1 corresponds to the 

mailer root,%dex 2 to%e larger one. 
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For B 11 VO it was possible to speak, just as in ordinary hydrodynaulcs, 

about the flou about a body of given form, Independently of the field ln- 

side the body. This is explained by the fact that the field at the rall 

of the body is alrays parallel to the wall and is independent of the 
field Inside the body. The field inside the body simply deterulnes the 
jump in field at the surface. If V,, f UO then nAy - ~8, = YeAye f 0, 
throughout the whole flow field. 

It follow that on the surface of the body In the flow. atBn = 

V,,B o f 0. Le. the normal component of the field Is different from Zero. 
In z his case the field at the wall cannot have a discontinuity since then 
a surface current would develop, on which there would be a force tangent 
to the body, which is iaposslble in an Ideal fluid. Therefore, It is not 
possible to investigate the problem of flor over a body of given foru in- 
dependently of the development of the field inside the body. 

FIG. 4. 

let us investigate, for example, the flow about a thin profile at 
zero angle of attach. Inside the body there are no sources of magnetic 
field. ‘lherefore, during the passage of the body the field cau change by 
an amount which is of the order of the square of the body thickness. It 
follows that, to the accuracy being considered, HX+ t H,_ and If,,+ = HP 
(the indices plus and minus refer, respectively, to upper and lo~r sur- 
faces of the profile). From this condition and the second last equation 
of (1.2) it follows that u+ = II_ . In addition, the profile shape is 
given, that is, V+ = - V_ = f(x). 

For a = 1/21r the hyperbolic type of flow occurs for values of Y > 
dltN2. In this case, disturbances cannot penetrate upstream. Ihere- 
fore, Equations (2.1) may be integrated along the characteristics which 
go upstream, since in front .of the body all disturbances are zero. This 
gives us four relations, for six unkuowns Hz+, II+, and p+. 

With the conditions Rx+ = Rx- and II+ = u_ them am enough equations 
to determine u+, p+ and H, + . 
equation of (1.2). 

‘lben HY is found from the second last 

Solving this system for the problem under consideration, we obtain 
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u+ = ypyp 
vo ~(IYl’l-lya’I)~, H,+=H,_=O 

& =&24!5 

AaV,’ P- = PC 

ii = 1 y,’ 1” (i- Wyl’2) - 1 y,’ Ik (I- M%.g) 

(2.3) 

From (1.41, when tg a + oo we have y' = - ctql ull and M= MI1 tg 011. 
From (2.2) and Fig. 3 it is easy to see that the small root y1 corres- 
ponds to values of "11 intheintervalN/\/l+Nf<M~<N< lfor 
N< 1, andintheintervalN/\/l+N*(MI~ (lfor > 1. 'Ibelarger J 
root y2’ corresponds to the value "II> 1 for N < 1, and MII> N for N > 1. 
'Iberefore, yl'*@ < 1 and y2 '*p > 1. Consequently, Ah > 0 . 

“bus, for u+ > 0 the pressure on the wall p+ > 0 and the velocity 
u+ < 0, as in ordinary gas dynamics. lkmever, where in ordinary gas 
dynamics the pressure increase occurs through a single compression shock, 
e.g. on a wedge, here it occurs through two successive shocks. In fact, 
let us exanine any point between the characteristics issuing downstream 
from the vertex of the mzdge (Fig. Sa). It is evident that through such 
a point there pass three characteristics from upstream infinity and one 
(with inclination + y2 '1 from the body surface. Integrating (2.1) along 
these characteristics we will obtain four relations for determining four 
quantities u, u, p and H, at the point in question. 

Solving these equations we find 

0 Y¶” (1 - U%l'? P _ I Y'sI*u --2YP) u 
-= I Y'a I 
=i AS a P, - Aa . G = I Ya' I - I% I 

From this it may be seen that for u+ > 0, v > 0 and p > 0. Also, u/u+< 1 
and p/p+ < 1. 'Ibus, the flow is caspressed first by the first shock and 
then by the second. For N + 0 the angle of inclination and strength of 
the second shock tend toward zero, dGle the first shock becomes the 
shock of ordinary gas dynamics. 

We note that at the first shock the flow is slowed down (u < 0) while 
at the second one it is accelerated (u/u+ > 1). In fact, to the shock 
with inclination y2' there corresponds a value of M 

r 

> 1, andtothe 
shock with inclination yl' a value of "11 betmen N 4 1 + N' and N < 1. 
In the first case, as sbown in [ 3 ] the end of the velocity vector do=- 
strema of a shock with inclination (I 11 , corresponding to u2, appears in 
the first quadrant, while in the second case it appears in the second 
quadrant (Fig. 6). In passing through a real shock with inclination o1 
the end of the velocity vector appears, correspondingly in quadrants 1' 

*, 

and 2'. In the first case the velocity decreases, in the second case in- 
creases. 
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We shall also investigate the flow over a flat plate at angle of 
attack (Fig. 5bl. In this case, u+ = u_ . Again, proceeding along 
characteristics from upstream infinity we obtain 

u+= u_=o, PA-= -P-7 H,+= II,_= 0 

P+ xA2M”v+ H x+ N2Ma I ~1’ I I ~a’ I (lye’ I - 1~1’ I) 

PO = 
-= 

v+ 

AlVo ’ Ho AZ vo (2.4) 

Analogously to the foregoing, we have at a point between the charac- 
teristics, 

V -= I ~a' I (1 - M2~l'n) yz’” (1 - iwy1’2) u P ,-=-- M2yl‘ay2’2 

v+ AI ’ p+- A!4 v+ PA1 

‘&us, in this case also, for v+ > 0 the compression occurs through 
two shocks. E& we note that for a given flow deflection in the two 
cases we have considered the shock systems will be different. It is 
evident that for v+ > 0 the flow deflection occurs by means of expansion 
waves. For N + 0 the second shock (or expansion wave) lies along the 
body. 

FIG. 5. FIG. 6. 

3. Flow over currents. I$ t o now it was assmed that there were 
no currents in the body. We shall now investigate the flow around a body 
containing currents perpendicular to the plane of the flow. 

For a simple example we shall investigate a flat plate at zero angle 
of attack (the conducting layer is assumed to be isolated from the flow). 
let 

Hx,=O, H,o= H, 
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In this case the following conditions nest be fulfilled on the surface 
of the body: 

&+= H Y-* ?I+= V- = 0, u+= u_, H,+---&_=f(z) 

where the function f(x) is determined by the distribution of current 
along the plate. Proceeding along the characteristics from upstream in- 
finity, as in Section 2, we find 

H+= -II_= ii(z), $ =-,y; I.Iyayg+ 

x PON’ (1 - ml'vi- Jwr”)(l Yr’ ( -1 y1’ I) fG+ 
(3.1) 

p+=p_=- 
& HO 

We assuae for simplicity that f(x) = const and investigate a point 
between the characteristics which proceed downstream from the nose of 
the plate (Fig. 7). Proceeding to this point along the three character- 
istics from infinity and along one characteristic from the body, we ob- 
tain 

tl -=- I Yl'l(1 - Jflyr’3 P- I Y¶' I 
e+ Al t 

p+ - lY¶‘l - I Yl’l 

H-b - Yl’P (1 - wh’9 - -- 
H x+ Aa 

For HT+> 0 we have p+ > 0, II+ < 0, and 
in addition, p > 0 and p/p+ > 1. 

Therefore, the flow first goes through a 
shoclc in which the gas is strongly compressed, 
after which it is expanded a certain amount by 
an expansion wave. For N+ 0 this expansion 

V, 

I % 

FIG. 7. 

wave lies along the body, going over into a tangential discontinuity of 
magnetic field, snd in the region between the shoclc and the expansion 
wave the disturbance approaches zero. Ihus, the flow fully screens the 
currents only in the absence of a transverse magnetic field. In all 
other cases, disturbances created by the currents penetrate into the 
flow. 

Evidently,_ for fix+ < 0 there is first an expansion wave, followed by 
a shoclc wave. 

For large but finite conductivity, the shoch (or expansion wave) be- 
comes a certain layer which, for 1v-b 0, approaches the body to becane a 
maepletic boundary layer of the type investigated in 14 1. 

For M < 4 l+ fl snd iIYa + 0 disturbances penetrate into all flows. 
However, for small value8 of I&, in an ideal infinitely conducting 
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fluid, there appears around the plate a magnetic boundary layer, in which 
the magnetic field changes from a value at the wall (determined by the 
flow) to practically zero (Fig. 81. This layer is similar to the one in- 
vestigated in I 5 1. In order to clarify in the simplest possible manner 
the phenomena obtained here, we shall investigate the flow over a plate 
with current, in an infinitely conducting incompressible fluid (Fig. 8).* 
The thickness of the layer is proportional to HYO. Taking u and H, to be 

FIQ. 8. 

quantities of order unity, and making the usual assumptions of boundary 
layer theory, we find from one of the equations of motion that across 
the layer 

Hz8 
p -I- F = const 

The other equation of motion becomes 

(3.2) 

In addition, the following equations must be satisfied: 

g++), gz++o, uH,- vH,= HV,UO (3.3) 

‘lhe first two.equations of (3.3) make it possible to introduce the 
functions $ snd x by means of the relations 

n = q@Y, v = - a+jax, Hx= axjay, Hv= - ax/ax (3.4) 

Differentiating the last equation of (3.31 and making use of the other 
two equations of (3.3) we obtain 

aI-% aHu-H,;;+H &I 

U-z 
+vay- 

“Fy ’ 
H$+H$= 5 u - + v 2 (3.5) 

In Equations (3.2) and (3.5) it is convenient to change to the vari- 
ables y% and x. We have 

l Here we do not assume the disturbance to be small. 



Y.N. Kogan 

‘lhe system (3.6) evidently has two f&lies of characteristics 

$4 4flP +x= const. Along these characteristics the relations 

V-Gu’tH,‘= 0 (3.8) 

are satisfied. The characteristics corresponding to the upper sign we 
shall call characteristics of the first family, and those with the lower 
sign the second fmnily. 

Equation (3.7) makes possible a function CE, (x , 4) such that 

v = i%D/ax, H,= - i3cD/aJ, 

‘lherefore, the last of equations (3.3) may be put in the form 

u ‘$ +H, t$ = - Hy,u,, (3.9) 

l’he variables $ and x are connected with the variables x and y by the 
relations 

dx = & 
V* 

o (&d+ - ndx), dy -& VW+ - W (3 10) 
Y. 

As an example, let us investigate the flow over a flat plate with a 
current distributed according tothe relation R,+ = kx = f(x). 

In the x, y% plane the problem Is formulated as follows: 

H,+=kx,.v=O for+=0 

At infinity. along characteristics of the first imU, 

Hx=O, u=u,, for (ct+w 

Along characteristics of the first family we have 

~Gu + Hx= u,,)/G (3.11) 

It follows that on the body a(~, 0) = u0 - Hz+/4 Inp. Then, from 
(3.10). we have 

quo JfG$ 
4t = kz - ug JfG dx* Or 

I _ uoV4xp 
k (’ - eAx) 
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It is easy to see that a and Ii= are constant along characteristics of 
the second fauily X E d 4np ui + x = const for A < 0. and that a = as and 

% = 0 for A > 0. 

Thus, for A < 0, 

u = u,,eAX, H,= uo)/Gp (1 - eAa) (3.12) 

Putting these expressions In Expression (3.9) and integrating, we ob- 
tain 

and 

(3.13) 

Putting (3.14) into (3.10) with X = 0 we find a line which is the edge 
of the boundary layer in the physical plane: 

POT kx -D a,, 4 4np we have y -D 00. This point corresponds to a separation 
of the flow, [o/us 4 4np /k, 0) = 01. 

We note that the force acting on the current flowing in the body, in 
the presence of the flow of an Infinitely conducting fluid or gas, is 
different from the force which acts on the saue current in the absence 
of flow. The resistance created by a transverse uagnetic field is similar, 
in the well-known sense, to a resistance which is dependent on viscosity. 

4. Flows in the elliptic-hyperbolic regime. According to the 
classification given iu Section 1, we call those flows elliptic-hyper- 
bolic in which only tn, characteristics appear. We shall investigate this 

flow in detail for a = l/2 n. From Fig. 3 and Equation (2.2) it follows 

that at every point of the flow there are two families of characteristic6 

corresponding to u > 0 and o < 0. Along the characteristics relations 
(2.1) are satisfied. 

We assume that (just as in the usual flows of elliptic type) all per- 
turbations die out at infinity. Then two relations (2.11, satisfied along 

the characteristics, allow p to be expressed in terms of u and H, in 

terms of v. Solving this system for given boundary conditions on the 
velocity, we at the smae time determine completely the distribution of 

magnetic field, in particular, at the boundary of the body. It is clear 
that values so obtained for the field at the boundary of the body can be 
continuously joined with the magnetic field inside the body only for a 

special choice of the boundary conditions on the velocities and the 
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currents inside the body. In the general case, the condition for con- 
tinuity of the field at the body boundary and the condition for the dying 
out of the perturbations at infinity are not compatible. Fraa this it 

PIG. 9. 

follows that, within the frsmework 
of the linear theory being consider- 
ed by us, the perturbations at in- 
finity do not die out. In a nonline- 
approximation, naturally, all pertur- 
bations die out at infinity. 'l'here- 
fore, the fact that perturbations do 
not die out along characteristics in 
the linear theory indicates that in 
the real flow the characteristics 
must terminate sanewhere in the flow. 

In the case under consideration 
they can run into shock waves. Indeed, 
since the characteristics are shock 
waves of vanishing strength, the 
existence of characteristics points 
to the existence of shock waves in 
the flow regime being investigated. 

From Fig. 3 it was seen that shock waves exist for all values of M 
from zero to r-4 l+ A@. 

Let us investigate which of two possible shock waves (directed up- 
stream or downstream) can extend fraa the body. Here, just as in ordinary 
gas dynamics, it is necessary to distinguish a wave leaving the body 
from one coming into it. Let us ass- that from some point on the upper 
surface of the body (Fig. 9) a shock or an expansion wave goes upstremn 
at an inclination angle u. Frcnu Fig. 9 it may be seen that the waves 
being considered correspard to values of the parameter 111 falling in the 
intervals 

N/‘C/1+N2<Ml<N for N<~HN/~~+N~<M~<~ for N>l. 

For these values of the parameter, as shown in I_3 1 for a flow with 
a = 0, obtained fraa that exssrined above by the superposition of an 
appropriate velocity dcnnstrerP of the wave, two regimes are possible as 
shown in Fig. 9. For that case, if the wave is a shock wave, the end of 
the velocity vector behind the shock will lie in Quadrsnt 1, if the wave 
is an expansion wave, it will lie in @adrant 2. In the flow with a =s/2 
the end of the velocity vector after the wave appears, correspondingly, 
in @adrants 1'. and 2'. From the flow schemes shone in Fig. 9 it is seen 
that on the upper surface a wave dincted upstresm will be an incca+ 
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wave. On the other hand, on the lower surface, where the wave with the 
inclination under consideration is directed downstream, the wave is an 
outgoing one. Thus, in the flow being investigated only waves outgoing 
downstream are possible. It follows that only characteristics which go 
out from the body downstream can run into shock waves; along these 
characteristics perturbations do not die out in the linear approximation1 
along characteristics 
zero. 

which go upstremn the perturbations tend toward 

In accordance with the analysis given, the following relations are 
valid at an arbitrary point of the flow, according to lkluaticn (2.11: 

L, k y) = F(h), LT (2, y) = 0 (1 = XT?// I ?/I’ I) (4.1) 

where 

and P(x) is a certain, so far unknown, function of A. ‘he upper sign 
corresponds to positive yl’. and the lo-r sign to negative (the body is 
ass-d to be near the axis y = 0). It is evident that F(h 1 = 0 along 
charmteristics which do not go through the body, since one end of such 
characteristics goes out to upstream infinity. With the help of (4.1) and 
the last two equaticms of (1.2) it is possible to eliminate from Equa- 
tions (1.2) either If+, fly, p and p, or u, v, p and p. lhe result gives 
two systems of equations for u and IJ, and Hz and HY respectively: 

(4.21 

W- iM2- N* (1 -MO)] yl’p aH# N2 aHx _ HoF’ (A) (4.3) 
Yl'¶ ax aY 2Yl'a 

It is easily verified that the operators on the left-hand sides of 
these equations are of elliptic type for Y < \I 1 + p and of hyperbolic 
type forII>dl+P. Ih e solution of the systems (4.2) and (4.3) may 
be represented in the form of a SM, the first terms of which (ul, vl, 

H 1 are functions of X and satisfy a non-homogeneous system of 
%nag differential equations, while the second terms (u,, vi, E 
are functions of x snd y and satisfy homogeneous systeam of partia 
differential equations , each one of which reduces to Laplace’s equation. 
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Integrating the system of ordinary differential equations we find 

The constants of integration are equal to zero, since on the charac- 
teristics which do not pass through the hody the functions ul, vI, etc. 
must be equal to zero. 

The functions (4.4) represent the hyperbolic part of the solution, 
which does not die out at infinity. ‘Ihe functions at, u,, etc. are the 
elliptic part of the solution, which dies out at infinity. Ike possibil- 
ity of separating the solution into a hyperbolic and an elliptic part 
justifies the wning of these flows elliptic-hyperbolic. 

On the boundary of a body (a thin one, for simplicity) one has twelve 
unhnown functions, F,, ugt, vzt, 8% and pt. These functions are 

connected by the four relations (4. 

obtained from the second last 
HP = HY_ and v+ = f+(x) and v_ = f(x). With the help of these 

it is possible to find two functions C, *(If , H 
Y4’ 

u2, +g, 

which make it possible to formulate the boundary ~alu?problem for the 

FIG. 10. 

two Laplace equations obtained from (4.2) and (4.3). For flows with sym- 
metry with respect totheaxisy=O these functions are separable f i.e. 
G,(r.+ z$ = 0 and G* vI12. l$*’ I 0) t and the problem for each Laplace 

equation is solved separately. 

A sketch of the shock waves which appear at the body, and in which the 
hyperbolic part of the solution has a discontinuity, is shown in Fig.10. 
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